Preface 3
        Contents 5
        1 Functions of a Complex Variable 9
        11 A Brief Review of Analytic Functions 9
        12 Cauchy Residue Theorem and Its Applications 23
        13 Poisson's Integral and Mittag-Le_er's Expansion 53
        14 Evaluations of Inverse Laplace Transform 58
        Exercise 64
      
      
        2 Conformal Mapping 69
        21 Examples of Conformal Mappings 69
        22 Transformation of Harmonic Functions 78
        23 Applications to Steady Temperatures 81
        24 Applications to Electrostatic Potential 90
        25 Schwarz-Christo_el Transformation 101
        26 Applications to Fluid Flow 113
        Exercise 124
      
      
        3 Elliptic Functions 129
        31 Introduction 129
        32 Elliptic Integrals 135
        33 Parametric Equation of the Ellipse 145
        34 Reduction to the Standard Form 157
        35 Complex Argument 169
        36 _Conformal Mapping 174
        37 _Applications 181
        Exercise 196
      
      
        4 Tensor Calculus 201
        41 Tensor Algebra 201
        42 Fundamental Tensor (Metric) 207
        43 Parallel Displacement 213
        44 Christo_el Symbols 214
        45 Covariant Di_erentiation 221
        46 Geodesics 228
        47 Frenet-Serret Formulas 236
        48 Riemann-Christo_el Tensors 241
        49 Gravity as a Metric Phenomenon 255
        Exercise 269
      
      
        5 Sturm-Liouville Theory 271
        51 Adjoint and Hermitian Operators 272
        52 Properties of the Hermitian Operators 279
        53 Bessel Inequality and Schwarz Inequality 284
        54 Green Function 290
        55 Gram-Schmidt Orthogonalization 317
        Exercise 321
      
      
        6 Gamma Function 323
        61 De_nition and Properties of Gamma Functions (z) 323
        62 Integral Expression of (z) 328
        63 Cauchy and Saalschutz Extension of (z) with Re(z) 64 Digamma Functions And Polygamma Functions 333
        65 Bernoulli Numbers And Bernoulli Functions 339
        66 Euler-Maclaurin Integration Formula 342
        67 Beta Function and Incomplete Functions 346
        68 Error Functions 353
        69 Dirichlet Integral 357 Exercise 360
      
      
        7 Bessel Functions 365
        71 Generating Function 365
        72 Recurrence Relations 368
        73 Integral Expressions of Bessel Function Jn(x) 370
        74 Bessel Functions J_(x) with Noninteger _ 371
        75 Contour Expression of Bessel Functions 380
        76 Orthogonality of Bessel Functions 383
        77 The Second Kind Bessel Functions N_(x) 391
        78 Hankel Functions H(1;2)
        _ (x) 394
        79 Saddle-Point Method (Steepest Descent) 396
        710 Wronskian Formulas 401
        711 Modi_ed Bessel Functions 403
        712 Spherical Bessel Functions 410
        713 Modi_ed Spherical Bessel Functions 419
        Exercise 421
      
      
        8 Legendre Functions 425
        81 Generating Function 425
        82 Recurrence Relations 429
        83 Orthogonality 433
        84 Rodrigues Formula of Legendre Functions 439
        85 Legendre Functions of the Second Kind 444
        86 Laplace Integral Representation of Legendre Function 450
        87 Associated Legendre Functions 452
        88 Spherical Harmonic Functions 462
        89 Angular Momentum 468
        810 Addition Theorem 474
        811 _Integrals of the Product of Three Spherical Harmonic Functions 479
        Exercise 481
      
      
        9 Other Special Functions 485
        91 Hermite Functions 485
        92 Laguerre Functions 502
        93 Associated Laguerre Functions 506
        94 Chebyshev Polynomials 514
        95 Hypergeometric Functions 526
        96 Conuent Hypergeometric Functions 535
        Exercise 543
      
      
        10 Fourier Series and Fourier Transform 547
        101 Fourier Series 547
        102 Complex Fourier Series 561
        103 Applications to Solving Di_erential Equations 563
        104 Fourier Integral 569
        105 Properties of Fourier Transform 583
        106 Dirac _-Function 601
        Exercise 610
      
      
        11 Laplace Transform 615
        111 De_nition of Laplace Transform 615
        112 Properties of Laplace Transform 618
        113 Applications to Special Functions and Di_erential Equations 630
        114 Inverse Laplace Transform 647
        115 Operator Calculus 656
        116 Useful Integrals 662
        Exercise 669
      
      
        12 Mellin and Hankel Transform 673
        121 De_nition of Integral Transform 673
        122 Mellin Transform 678
        123 Properties of Mellin Transform 687
        124 Hankel Transform 691
        125 Properties of Hankel Transform 702
        126 Relation Between Hankel and Fourier Transforms 707
        127 _Dual Integral Equations 714
        128 Finite Hankel Transform 722 Exercise 738
      
      
        13 Integral Equations 741
        131 Linear Di_erential Equations And Integral Equations 742
        132 Sturm-Liouville Equation into Integral Equation 747
        133 Integral Transforms 759
        134 Iteration Method 767
        135 Separable Kernels 769
        136 Eigenvalues and Eigenfunctions 772
        137 Variation-Iteration Method 777
        138 Two-Dimensional Green Function 782
        139 Three-Dimensional Green Function 789
        1310Applications to Heat, Wave, and Schrodinger Equations 796
        Exercise 807
      
      
        14 Calculus of Variations 813
        141 Variational Calculus 814
        142 Hamiltonian Principle 821
        143 One Dependence, Several Independent Variables 824
        144 Several Dependent, Several Independent Variables 827
        145 Lagrangian Multipliers 830
        146 Variation Subject to Constraints 835
        147 Rayleigh-Ritz Method 842
        148 Variational Formulation of Eigenfunction Problems 844
        149 Eigenfunction Problems by the Ratio Method 850
        Exercise 855
        Bibliography 859
        Index 861
      
      
        Preface 3
        Contents 5
        1 Functions of a Complex Variable 9
        11 A Brief Review of Analytic Functions 9
        12 Cauchy Residue Theorem and Its Applications 23
        13 Poisson's Integral and Mittag-Le_er's Expansion 53
        14 Evaluations of Inverse Laplace Transform 58
        Exercise 64
      
      
        2 Conformal Mapping 69
        21 Examples of Conformal Mappings 69
        22 Transformation of Harmonic Functions 78
        23 Applications to Steady Temperatures 81
        24 Applications to Electrostatic Potential 90
        25 Schwarz-Christo_el Transformation 101
        26 Applications to Fluid Flow 113
        Exercise 124
      
      
        3 Elliptic Functions 129
        31 Introduction 129
        32 Elliptic Integrals 135
        33 Parametric Equation of the Ellipse 145
        34 Reduction to the Standard Form 157
        35 Complex Argument 169
        36 _Conformal Mapping 174
        37 _Applications 181
        Exercise 196
      
      
        4 Tensor Calculus 201
        41 Tensor Algebra 201
        42 Fundamental Tensor (Metric) 207
        43 Parallel Displacement 213
        44 Christo_el Symbols 214
        45 Covariant Di_erentiation 221
        46 Geodesics 228
        47 Frenet-Serret Formulas 236
        48 Riemann-Christo_el Tensors 241
        49 Gravity as a Metric Phenomenon 255
        Exercise 269
      
      
        5 Sturm-Liouville Theory 271
        51 Adjoint and Hermitian Operators 272
        52 Properties of the Hermitian Operators 279
        53 Bessel Inequality and Schwarz Inequality 284
        54 Green Function 290
        55 Gram-Schmidt Orthogonalization 317
        Exercise 321
      
      
        6 Gamma Function 323
        61 De_nition and Properties of Gamma Functions
      
      
        9 Other Special Functions 485
        91 Hermite Functions 485
        92 Laguerre Functions 502
        93 Associated Laguerre Functions 506
        94 Chebyshev Polynomials 514
        95 Hypergeometric Functions 526
        96 Conuent Hypergeometric Functions 535
        Exercise 543
      
      
        10 Fourier Series and Fourier Transform 547
        101 Fourier Series 547
        102 Complex Fourier Series 561
        103 Applications to Solving Di_erential Equations 563
        104 Fourier Integral 569
        105 Properties of Fourier Transform 583
        106 Dirac _-Function 601
        Exercise 610
      
      
        11 Laplace Transform 615
        111 De_nition of Laplace Transform 615
        112 Properties of Laplace Transform 618
        113 Applications to Special Functions and Di_erential Equations 630
        114 Inverse Laplace Transform 647
        115 Operator Calculus 656
        116 Useful Integrals 662
        Exercise 669
      
      
        12 Mellin and Hankel Transform 673
        121 De_nition of Integral Transform 673
        122 Mellin Transform 678
        123 Properties of Mellin Transform 687
        124 Hankel Transform 691
        125 Properties of Hankel Transform 702
        126 Relation Between Hankel and Fourier Transforms 707
        127 _Dual Integral Equations 714
        128 Finite Hankel Transform 722 Exercise 738
      
      
        13 Integral Equations 741
        131 Linear Di_erential Equations And Integral Equations 742
        132 Sturm-Liouville Equation into Integral Equation 747
        133 Integral Transforms 759
        134 Iteration Method 767
        135 Separable Kernels 769
        136 Eigenvalues and Eigenfunctions 772
        137 Variation-Iteration Method 777
        138 Two-Dimensional Green Function 782
        139 Three-Dimensional Green Function 789
        1310Applications to Heat, Wave, and Schrodinger Equations 796
        Exercise 807
      
      
        14 Calculus of Variations 813
        141 Variational Calculus 814
        142 Hamiltonian Principle 821
        143 One Dependence, Several Independent Variables 824
        144 Several Dependent, Several Independent Variables 827
        145 Lagrangian Multipliers 830
        146 Variation Subject to Constraints 835
        147 Rayleigh-Ritz Method 842
        148 Variational Formulation of Eigenfunction Problems 844
        149 Eigenfunction Problems by the Ratio Method 850
        Exercise 855
        Bibliography 859
        Index 861